Semos Education Semos Education
  • Понеделник-Петок 9:00 - 22:00
  • Јави ни се +389 2 3130 900
    +389 75 310 910
  • Пиши ни kursevi@semos.com.mk
EN / МК / RS
Кошничка
резервирај место
  • Опис
  • Содржина
  • За кого е наменет
  • Сертификати

Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning.
 
This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring with Azure Machine Learning and MLflow.

LEARNING PATH 1
Design a machine learning solution
 

  • Module 1: Design a data ingestion strategy for machine learning projects
  • Module 2: Design a machine learning model training solution
  • Module 3: Design a model deployment solution
  • Module 4: Design a machine learning operations solution

 
LEARNING PATH 2
Explore and configure the Azure Machine Learning workspace
 

  • Module 1: Explore Azure Machine Learning workspace resources and assets
  • Module 2: Explore developer tools for workspace interaction
  • Module 3: Make data available in Azure Machine Learning
  • Module 4: Work with compute targets in Azure Machine Learning
  • Module 5: Work with environments in Azure Machine Learning

 
LEARNING PATH 3
Work with data in Azure Machine Learning
 

  • Module 1: Make data available in Azure Machine Learning

 
LEARNING PATH 4
Work with compute in Azure Machine Learning
 

  • Module 1: Work with compute targets in Azure Machine Learning
  • Module 2: Work with environments in Azure Machine Learning

 
LEARNING PATH 5
Experiment with Azure Machine Learning
 

  • Module 1: Find the best classification model with Automated Machine Learning
  • Module 2: Track model training in Jupyter notebooks with MLflow

 
LEARNING PATH 6
Use notebooks for experimentation in Azure Machine Learning
 

  • Module 1: Track model training in Jupyter notebooks with MLflow

 
LEARNING PATH 7
Train models with scripts in Azure Machine Learning
 

  • Module 1: Run a training script as a command job in Azure Machine Learning
  • Module 2: Track model training with MLflow in jobs
  • Module 3: Perform hyperparameter tuning with Azure Machine Learning

 
LEARNING PATH 8
Optimize model training with Azure Machine Learning
 

  • Module 1: Run a training script as a command job in Azure Machine Learning
  • Module 2: Track model training with MLflow in jobs
  • Module 3: Perform hyperparameter tuning with Azure Machine Learning
  • Module 4: Run pipelines in Azure Machine Learning

 
LEARNING PATH 9
Manage and review models in Azure Machine Learning
 

  • Module 1: Register an MLflow model in Azure Machine Learning
  • Module 2: Create and explore the Responsible AI dashboard for a model in Azure Machine Learning

 
LEARNING PATH 10
Deploy and consume models with Azure Machine Learning
 

  • Module 1: Deploy a model to a managed online endpoint
  • Module 2: Deploy a model to a batch endpoint

This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud.

Microsoft Certified: Azure Data Scientist Associate after successful completion of the Exam DP-100: Designing and Implementing a Data Science Solution on Azure

Опис

Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning.
 
This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring with Azure Machine Learning and MLflow.

Содржина

LEARNING PATH 1
Design a machine learning solution
 

  • Module 1: Design a data ingestion strategy for machine learning projects
  • Module 2: Design a machine learning model training solution
  • Module 3: Design a model deployment solution
  • Module 4: Design a machine learning operations solution

 
LEARNING PATH 2
Explore and configure the Azure Machine Learning workspace
 

  • Module 1: Explore Azure Machine Learning workspace resources and assets
  • Module 2: Explore developer tools for workspace interaction
  • Module 3: Make data available in Azure Machine Learning
  • Module 4: Work with compute targets in Azure Machine Learning
  • Module 5: Work with environments in Azure Machine Learning

 
LEARNING PATH 3
Work with data in Azure Machine Learning
 

  • Module 1: Make data available in Azure Machine Learning

 
LEARNING PATH 4
Work with compute in Azure Machine Learning
 

  • Module 1: Work with compute targets in Azure Machine Learning
  • Module 2: Work with environments in Azure Machine Learning

 
LEARNING PATH 5
Experiment with Azure Machine Learning
 

  • Module 1: Find the best classification model with Automated Machine Learning
  • Module 2: Track model training in Jupyter notebooks with MLflow

 
LEARNING PATH 6
Use notebooks for experimentation in Azure Machine Learning
 

  • Module 1: Track model training in Jupyter notebooks with MLflow

 
LEARNING PATH 7
Train models with scripts in Azure Machine Learning
 

  • Module 1: Run a training script as a command job in Azure Machine Learning
  • Module 2: Track model training with MLflow in jobs
  • Module 3: Perform hyperparameter tuning with Azure Machine Learning

 
LEARNING PATH 8
Optimize model training with Azure Machine Learning
 

  • Module 1: Run a training script as a command job in Azure Machine Learning
  • Module 2: Track model training with MLflow in jobs
  • Module 3: Perform hyperparameter tuning with Azure Machine Learning
  • Module 4: Run pipelines in Azure Machine Learning

 
LEARNING PATH 9
Manage and review models in Azure Machine Learning
 

  • Module 1: Register an MLflow model in Azure Machine Learning
  • Module 2: Create and explore the Responsible AI dashboard for a model in Azure Machine Learning

 
LEARNING PATH 10
Deploy and consume models with Azure Machine Learning
 

  • Module 1: Deploy a model to a managed online endpoint
  • Module 2: Deploy a model to a batch endpoint
За кого е наменет

This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud.

Сертификати

Microsoft Certified: Azure Data Scientist Associate after successful completion of the Exam DP-100: Designing and Implementing a Data Science Solution on Azure

Досегашни искуства

Што кажаа луѓето за нас

  • - Марко Крстевски студент за Microsoft .NET

    Барајќи да го проширам своето знаење, се одлучив да се запишам во Семос Едукација каде го добивам потребното знаење и искуство.

  • - Теодор Марковски Студент

    Желбата да станам Cloud architect ме доведе до Семос Едукација. Воодушевен сум од позитивните искуства на поранешни студенти и начинот на кој предавачите и Кариерниот центар се грижат за студентите.

  • - Викторија Георгиева Летна менторска програма за Python Developer

    Репутацијата на Семос Едукација за квалитетна обука и можноста за учење од искусни инструктори одиграа дополнителна значајна улога во мојата одлука.

  • - Борче Пелтековски Акредитирана Академија за Графички дизајн

    По завршувањето во Семос Едукација се гледам во некоја компанија која работи со технологија, како на пример Samsung, Apple или компанија од сличен калибар.

  • - Наташа Димовска Официјалниот Data Science Институт

    Константното и ефективно учење се клучни аспекти ако сакате да си загарантирате сигурен пат кон успехот. "Не се откажувајте лесно и возвратете на предизвиците со уште поголем елан за остварување на зацртаните цели” стана моето животно мото кое го применив и во промената на мојата кариера.

  • - Петар Василев Официјалниот Data Science Институт

    За човек кој никогаш немал допир со IT сферата, Data Science Академијата во Семос Едукација ми даде големо теоретско и практично искуство, ми отвори доста нови врати и стекнав многу нови познанства преку Академијата.

  • - Александра Мандиќ Официјалниот Data Science Институт

    Најдобрата инвестиција е инвестицијата во себе

Запознајте ги инструкторите

  • Дејан Вакански  

    Microsoft Certified Trainer

    Data Consultant,

    Data Scientist @Semos Education

     

    22+ години искуство

  • Верица Маневска  

    Microsoft Certified Trainer

    Data analyst/Power BI Developer
    @iborn.net

     

    12+ години искуство

  • Симка Јаневска  

    Microsoft Certified Trainer

    Data and Analytics Engineer
    @Qinshift

     

    1+ години искуство

Контакт

  • Ирена Ивановска
    +389 70 246 146 irena@semos.com.mk